Étendue et enjeux de l’intelligence artificielle dans les emplois professionnels : une perspective pluridisciplinaire
DOI :
https://doi.org/10.1522/radm.no8.1844Mots-clés :
Applications IA, éthique, ressources humaines, syndicat, informatique, étude de portéeRésumé
Les applications de l’intelligence artificielle (IA) sont susceptibles de transformer le travail de professionnels(les) (soignants, juristes, enseignants, travailleurs sociaux, etc.). Cette étude de portée (scoping review) s’inscrit dans une collaboration entre les milieux syndicaux et de la recherche afin d’identifier les applications, usages et enjeux de l’IA qui sont documentés en lien avec le travail de professionnels(les). Les résultats montrent que l'IA est très présente dans des secteurs comme la santé, l’administration, le droit et l’enseignement. Ses finalités sont multiples : depuis l’archivage de données jusqu’à la prise de décision en passant par le traitement de textes, les interactions, la reconnaissance ou la simulation. Elle pourrait se développer dans de nombreux métiers et créer des enjeux transversaux majeurs, en particulier autour des compétences, des emplois, de l’éthique et du fonctionnement des organisations. Des enjeux plus spécifiques à chaque métier sont aussi identifiables. Ces résultats permettent de proposer une discussion pluridisciplinaire de ces enjeux en traitant de l’éthique dans la problématique du consentement à l’IA, de la dualité technologique de l’IA, du rôle d’un syndicat par rapport à l’IA et du défi informatique de l’explicabilité de l’IA.
Références
Ågnes, J. S. (2022). Gaining and Training a Digital Colleague: Employee Responses to Robotization. The Journal of Applied Behavioral Science, 58(1), 29–64. https://doi.org/10.1177/00218863211043596
Abord de Chatillon, E. et Desmarais C. (2012). Le nouveau management public est-il pathogène? Management international, 16 (3), 10-24. https://id.erudit.org/iderudit/1011413ar
Agrawal, A., Gans, J., & Goldfarb A. (2018). Prediction Machines: The Simple Economics of Artificial Intelligence, Boston, Massachusetts: Harvard Business Review Press.
Arksey, H. et O'Malley, L. (2005). Scoping studies: towards a methodological framework. International journal of social research methodology, 8 (1), 19-32. https://doi.org/10.1080/1364557032000119616
Boatright, J.R. (2006). What’s Wrong—And What’s Right—With Stakeholder Management. Journal of Private Enterprise, 21(2), 106–130.
Bobillier-Chaumon, M.-E. (2021). Digital Transformations in the Challenge of Activity and Work: Understanding and Supporting Technological Changes. Oxford : STE-Wiley
Brivot, M. et Gendron, Y. (2011). Beyond panopticism: On the ramifications of surveillance in a contemporary professional setting. Accounting organizations and society, 36(3): 135-155. https://doi.org/10.1016/j.aos.2011.03.003
Brynjolfsson, E., Mitchell, T. et Rock, D. (2018). What can machines learn, and what does it mean for occupations and the economy? AEA Papers and Proceedings, 108, 43-47.
Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, 3(1), 1-12. DOI: 10.1177/2053951715622512
Cardon, D., Cointet, J.P. et Mazières, A. (2018). La revanche des neurons. Réseaux, 5(211), 173-220. https://doi.org/10.3917/res.211.0173
Carlini, N., Liu, C., Erlingsson, U., Kos, J. et Song, D. (2019). The secret sharer: Evaluating and testing unintended memorization in neural networks. 28th USENIX Security Symposium, 267-284.
Clot, Y., & Leplat, J. (2005). La méthode clinique en ergonomie et en psychologie du travail. Le travail humain, 68(4), 289-316. https://doi.org/10.3917/th.684.0289
Freeman, R. E. (1994). A Stakeholder Theory of the Modern Corporation. In Beauchamp, T.L. et Bowie N.E. (dir). Ethical theory and business, Upper Saddle River: Pearson: Prentice Hall, 66–76.Freeman, R. E., Harrison, J.S., Wicks A.C., Parmar B. & de Colle S. (2010,). Stakeholder Theory, The State of the Art. Cambridge: Cambridge University Press. https://doi.org/10.1080/19416520.2010.495581
Freeman, R. E., Harrison, J.S., Wicks A.C., Parmar B. et de Colle S. (2010,). Stakeholder Theory, The State of the Art. Cambridge: Cambridge University Press. https://doi.org/10.1080/19416520.2010.495581
Fréour, L., Pohl, S. et Battistelli A., (2021). How Digital Technologies Modify The Work Characteristics: A Preliminary Study. The Spanish Journal of Psychology, 24, e14. https://doi.org/10.1017/SJP.2021.12
Freyssenet, M. (1992). Processus et formes sociales d'automatisation Le paradigme sociologique. Sociologie du travail, 34(4), 469-496. https://doi.org/10.3406/sotra.1992.2611
Friedman, M. (1962) Capitalism and freedom. Chicago: University of Chicago Press.
Friedman, M. (1970). The Social Responsibility of Business Is to Increase Its Profits, The New York Times Magazine.
Gherardi, S. et Landri, P. (2014). “I Sign, Therefore I am” (Un)stable Traces of Professional Practices. Professions and Professionalism, 4(2), 1-11. https://doi.org/10.7577/pp.618
Godelier, M. (1984). L’idéel et le materiel. Paris: Fayard.
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F. et Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM computing surveys (CSUR), 51(5), 1–42. https://doi.org/10.1145/3236009
Hasnas, J. (1998). The normative theories of business ethics: A guide for the perplexed. Business Ethics Quarterly, 8(1), 19-42. https://doi.org/10.2307/3857520
Heath, J. et Norman W. (2004). Stakeholder Theory, Corporate Governance and Public Management: What can the History of State-Run Enterprises Teach us in the Post-Enron era? Journal of Business Ethics, 53, 247–265.
Hoc, J.M. et Darses, F. (Eds.) (2004). Psychologie ergonomique : tendances actuelles. Paris : PUF, Collection Le Travail Humain. https://doi.org/10.4000/activites.1635
Kellogg, K.C., Melissa A.V. et Christin A. (2020). Algorithms at work: the new contested terrain of control. Academy of Management Annals, 14(1), 366-410. https://doi.org/10.5465/annals.2018.0174
Kohler, D. et Weisz J.D. (2016) Industrie 4.0: comment caractériser cette quatrième révolution industrielle et ses enjeux? Annales des Mines-Réalités industrielles, 4, 51-56. https://doi.org/10.3917/rindu1.164.0051
Kuiper, M. (2018). Connective Routines: How Medical Professionals Work with Safety Checklists. Professions and Professionalism, 8(1), e2251. https://doi.org/10.7577/pp.2251
Lacroux, A. et Martin-Lacroux C. (2021). L’Intelligence artificielle au service de la lutte contre les discriminations dans le recrutement: nouvelles promesses et nouveaux risques. Management Avenir, 2(122), 121-142.
Leicht-Deobald, U., Busch, T., Schank, C., Weibel, A., Schafheitle, S., Wildhaber, I. et Kasper, G. (2019). The challenges of algorithm-based HR decision-making for personal integrity. Journal of Business Ethics, 160(2), 377-392. https://doi.org/10.1007/s10551-019-04204-w
Leonardi, P. M., Nardi, B. A. et Kallinikos, J. (Eds.). (2012). Materiality and organizing: Social interaction in a technological world. Oxford University Press.
Levy, K.e.c. (2022). Data Driven: Truckers, Technology, and the New Workplace Surveillance. Princeton: Princeton University Press.
Lipton, Z.C. (2018). The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue, 16(3), 31-57.
Malcolm, I. et Plowman, L. (2014). Knowledge, Technology and the Professional Learning of Localisers. Professions and Professionalism, 4(1), 1-15.
Martin, D. (2013). The Contained-Rivalry Requirement and a ‘Triple Feature’ Program for Business Ethics. Journal of Business Ethics, 115(1), 167-182. https://doi.org/10.1007/s10551-012-1369-4
Meijerink, J. et Bondarouk, T. (2023). The duality of algorithmic management: Toward a research agenda on HRM algorithms, autonomy and value creation. Human resource management review, 33(1), 100876.
Mintzberg, H. (1989). Le management : voyage au centre des organisations. Paris: Éditions d'Organisation.
Mira, J. M. (2008). Symbols versus connections: 50 years of artificial intelligence. Neurocomputing, 71(4-6), 671-680.
Moriarty, J. (2016). Business Ethics. In Zalta E.N. (Ed.) The Stanford Encyclopedia of Philosophy. Stanford: Metaphysics Research Lab, Stanford University.
Murphy, K.P. (2021). Probabilistic Machine Learning: An introduction. Boston: MIT Press.
Musk, E. (2014). I hope artificial intelligence is nice to us. New Perspectives Quarterly, 31(1), 51-55. https://doi.org/10.1111/npqu.11427
Narayanan, A. (2018). Translation tutorial: 21 fairness definitions and their politics. Conference Fairness Accountability Transparency, New York.
Office des professions du Québec (2021). Code des professions, tiré de http://legisquebec.gouv.qc.ca/fr/document/lc/c-26
Olsaretti, S. (2004). Liberty, desert and the market: A philosophical study, Cambridge: Cambridge University Press.
Orlikowski W.J. et Scott S.V. (2016). Digital work: a research agenda. In Czarniawska, B. (Ed), A research agenda for management and organization studies, Cambridge: Edward Elgar Publishing, p. 88-95.
Orlikowski, W.J. (1992). The duality of technology: Rethinking the concept of technology in organizations. Organization science, 3(3), 398-427. https://doi.org/10.1287/orsc.3.3.398
Orlikowski, W.J. (2010). The sociomateriality of organisational life: considering technology in management research. Cambridge Journal of Economics, 34(1), 125-141. https://doi.org/10.1093/cje/bep058
Pasquale, F. (2016) The Black Box Society, The Secret Algorithms That Control Money and Information. Harvard: Harvard University Press.
Pereira, V., Hadjielias, E., Christofi, M. et Vrontis, D. (2021). A systematic literature review on the impact of artificial intelligence on workplace outcomes: A multi-process perspective. Human Resource Management Review, 33, 100857. https://doi.org/10.1016/j.hrmr.2021.100857
Pfadenhauer, M. et Kirschner, H. (2017). From Dyad to Triad: Mediatization and Emerging Risks for Professional Autonomy. Professions and Professionalism, 7(1), e1646. https://doi.org/10.7577/pp.1646
Pichault, F. et Nizet J. (2000). Les pratiques de gestion des ressources humaines. Paris: Seuil.
Rabardel, P. (2005). Instrument, activité et développement du pouvoir d’agir. In Lorino P. et Teulier R. (eds). Entre connaissance et organisation: l’activité collective. Paris : La découverte, p. 251-265. http://www.cairn.info/entre-connaissance-et-organisation-l-activite-coll---page-251.htm
Rissanen, O., Pitkänen, P., Juvonen, A., Räihä, P., Kuhn, G. et Hakkarainen, K. (2017). How Has the Emergence of Digital Culture Affected Professional Magic? Professions and Professionalism, 7(3), e1957. https://doi.org/10.7577/pp.1957
Roll, M. et Ifenthaler D. (2021). Learning Factories 4.0 in technical vocational schools: can they foster competence development? Empirical Research in Vocational Education and Training, 13(1), 1-23. https://doi.org/10.1186/s40461-021-00124-0
Schaeffer, E. (2017). Industry X. 0: Realizing digital value in industrial sectors. London: Kogan Page Publishers.
Shokri, R., Stronati, M., Song, C., & Shmatikov, V. (2017). Membership inference attacks against machine learning models. IEEE Symposium on Security and Privacy (SP), 3-18. https://doi.org/10.1109/SP.2017.41
Simon, H.A. (1959). Theories of Decision Making in Economics and Behavioral Science. The American Economic Review, 49(3), 223-283.
Stout, L. (2012). The shareholder value myth: How putting shareholders first harms investors, corporations, and the public. San Francisco: Berrett-Koehler Publishers.
Tambe, P., Cappelli P. et Yakubovich, V (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61 (4), 15-42. https://doi.org/10.1177/000812561986791
Trottier, M. et Comeau-Vallée, M. Intelligence artificielle et travail : les enjeux organisationnels et managériaux. 87e Congrès de l’ACFAS, Ottawa, Canada
Werhane, P.H. et Radin T.J. (2004). Employment at Will and Due Process. In Beauchamp, T.L. et Bowie N.E. (Eds), Ethical theory and business. 7e éd, Upper Saddle River: Pearson: Prentice Hall.
Woodward J. (1965). Industrial Organization: Theory and Practice, Oxford : Oxford University Press.
Téléchargements
Publié-e
Numéro
Rubrique
Licence
© Mélanie Trottier, Ewan Oiry, Dominic Martin, Sébastien Gambs, Anne Thibault-Bellerose 2024

Cette œuvre est sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale 4.0 International.