Promouvoir l’adoption de l’IA dans les milieux d’emploi par l’entremise de l’explicabilité et de la confiance : une étude empirique

Authors

  • Viviane Masciotra Université de Montréal
  • Jean-Sébastien Boudrias Université de Montréal

DOI:

https://doi.org/10.1522/radm.no8.1840

Keywords:

Intelligence artificielle, confiance, explicabilité, travail, intention d'utilisation

Abstract

Artificial intelligence (AI) is associated with numerous benefits for workers and organizations. However, its novel capabilities are likely to generate fears for the sustainability of their jobs and reluctance to use AI among humans. In this study, the role of trust is studied in the use of AI among workers, as well as the ability of the explainability of the algorithm to promote trust. To achieve this, a randomized experimental design was used. The results reveal that trust promotes the intention to use AI, but that explainability does not contribute to the development of trust. In addition, explainability had an unexpectedly deleterious effect on the intention to use AI.

References

Agrawal, A., Gans, J. S. et Goldfarb, A. (2019). Exploring the impact of artificial intelligence: Prediction versus judgment. Information Economics and Policy, 47, 1-6. https://doi.org/10.1016/j.infoecopol.2019.05.001

Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R. et Herrera, F. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82-115. https://doi.org/10.1016/j.inffus.2019.12.012

Asan, O., Bayrak, A. E. et Choudhury, A. (2020). Artificial intelligence and human trust in healthcare: focus on clinicians. Journal of Medical Internet Research, 22(6). https://doi.org/10.2196/15154

Ashoori, M. et Weisz, J. D. (2019). In AI we trust? Factors that influence trustworthiness of AI-infused decision-making processes. arXiv, 1-10. https://doi.org/10.48550/arXiv.1912.02675

Atzmüller, C. et Steiner, P. M. (2010). Experimental vignette studies in survey research. Methodology European Journal of Research Methods for the Behavioral and Social Sciences, 6(3), 128-138. https://doi.org/10.1027/1614-2241/a000014

Bedué, P. et Fritzsche, A. (2022). Can we trust AI? An empirical investigation of trust requirements and guide to successful AI adoption. Journal of Enterprise Information Management, 35(2), 530-549. https://doi.org/10.1108/JEIM-06-2020-0233

Benbasat, I. et Wang, W. (2005). Trust in and adoption of online recommendation agents. Journal of the Association for Information Systems, 6(3), 4. https://doi.org/10.17705/1jais.00065

Black, J. S. et van Esch, P. (2020). AI-enabled recruiting: What is it and how should a manager use it?. Business Horizons, 63(2), 215-226. https://doi.org/10.1016/j.bushor.2019.12.001

Boon, S. et Holmes, J. (1991). The dynamics of interpersonal trust: Resolving uncertainity in the face of risk. Dans R. Hinde et J. Gorebel (dir.), Cooperation and prosocial behaviour (190-211). Cambridge University Press.

Braun, M., Bleher, H. et Hummel, P. (2021). A leap of faith: is there a formula for “Trustworthy” AI?. Hastings Center Report, 51(3), 17-22. https://doi.org/10.1002/hast.1207

Braganza, A., Chen, W., Canhoto, A. et Sap, S. (2021). Productive employment and decent work: The impact of AI adoption on psychological contracts, job engagement and employee trust. Journal of Business Research, 131, 485-494. https://doi.org/10.1016/j.jbusres.2020.08.018

Bruhn, J. et Anderer, M. (2019). Implementing artificial intelligence in organizations and the special role of trust. Media Trust in a Digital World: Communication at Crossroads, 191-205. https://doi.org/10.1007/978-3-030-30774-5_14

Burton, J. W., Stein, M. K. et Jensen, T. B. (2020). A systematic review of algorithm aversion in augmented decision making. Journal of Behavioral Decision Making, 33(2), 220-239. https://doi.org/10.1002/bdm.2155

Cabiddu, F., Moi, L., Patriotta, G. et Allen, D. G. (2022). Why do users trust algorithms? A review and conceptualization of initial trust and trust over time. European Management Journal, 40(5), 685-706. https://doi.org/10.1016/j.emj.2022.06.001

Carton, S., Mei, Q. et Resnick, P. (2020). Feature-based explanations don't help people detect misclassifications of online toxicity. Proceedings of the International AAAI Conference on Web and Social Media, 14, 95-106. https://doi.org/10.1609/icwsm.v14i1.7282

Castelvecchi, D. (2016). Can we open the black box of AI?. Nature News, 538(7623), 20-23. https://www.nature.com/news/can-we-open-the-black-box-of-ai-1.20731

Choung, H., David, P. et Ross, A. (2022). Trust in AI and its role in the acceptance of AI technologies. International Journal of Human–Computer Interaction, 39(3), 1–13. https://doi.org/10.1080/10447318.2022.2050543

Chaudhry, I. S., Paquibut, R. Y. et Chabchoub, H. (2022). Factors influencing employees trust in AI & its adoption at work: Evidence from United Arab Emirates. Proceedings of the International Arab Conference on Information Technology, 1-7. https://doi.org/10.1109/acit57182.2022.9994226

Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A. et Truong, L. (2023). Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human Resource Management Review, 33(1). https://doi.org/10.1016/j.hrmr.2022.100899

Confalonieri, R., Coba, L., Wagner, B et Besold, T. R. (2021). A historical perspective of explainable Artificial Intelligence. WIREs Data Mining and Knowledge Discovery, 11(1). https://doi.org/10.1002/widm.1391

Costello, A. B. et Osborne, J. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research, and Evaluation, 10(7). https://doi.org/10.7275/jyj1-4868

Custers, B. (2022). AI in criminal law: An overview of AI applications in substantive and procedural criminal law. Dans B. Custers et E. Fosch-Villaronga (dir.), Law and artificial intelligence. Information technology and law series (vol. 35). T.M.C. Asser Press. https://doi.org/10.1007/978-94-6265-523-2_11

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 13(3), 319-340. https://doi.org/10.2307/249008

de Vet, H. C., Mokkink, L. B., Mosmuller, D. G. et Terwee, C. B. (2017). Spearman–Brown prophecy formula and Cronbach's alpha: different faces of reliability and opportunities for new applications. Journal of Clinical Epidemiology, 85, 45-49. https://doi.org/10.1016/j.jclinepi.2017.01.013

Dietz, G. et Hartog, D. N. (2006). Measuring trust inside organisations. Personnel Review, 35(5), 557-588. https://doi.org/10.1108/00483480610682299

Dimensional Research. (2019, mai). Artificial intelligence and machine learning projects are obstructed by data issues global survey of data scientists, global survey of data scientists, AI experts and stakeholders. https://t.ly/FGo54

Eisinga, R., Grotenhuis, M. T. et Pelzer, B. (2013). The reliability of a two-item scale: Pearson, Cronbach, or Spearman-Brown?. International Journal of Public Health, 58(4), 637-642. https://doi.org/10.1007/s00038-012-0416-3

Emons, W. H. M., Sijtsma, K. et Meteijer, R. R. (2007). On the consistency of individual classification using short scales. Psychological Methods, 12(1), 105-120. https://doi.org/10.1037/1082-989X.12.1.105

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C. et Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272-299. https://doi.org/10.1037/1082-989X.4.3.272

Fan, W., Liu, J., Zhu, S. et Pardalos, P. M. (2020). Investigating the impacting factors for the healthcare professionals to adopt artificial intelligence-based medical diagnosis support system (AIMDSS). Annals of Operations Research, 294, 567-592. https://doi.org/10.1007/s10479-018-2818-y

Ferrario, A. et Loi, M. (2022). The robustness of counterfactual explanations over time. IEEE Access, 10, 82736-82750. https://doi.org/10.1109/ACCESS.2022.3196917

Gefen, D. (2000). E-commerce: the role of familiarity and trust. Omega, 28(6), 725-737. https://doi.org/10.1016/S0305-0483(00)00021-9

Gefen, D., Karahanna, E. et Straub D. W. (2003). Trust and TAM in online shopping: an integrated model. MIS Quarterly, 27(1), 51-90. https://doi.org/10.2307/30036519

Giermindl, L. M., Strich, F., Christ, O., Leicht-Deobald, U. et Redzepi, A. (2022). The dark sides of people analytics: Reviewing the perils for organisations and employees. European Journal of Information Systems, 31(3), 410-435. https://doi.org/10.1080/0960085X.2021.1927213

Gillath, O., Ai, T., Branicky, M. S., Keshmiri, S., Davison, R. B. et Spaulding, R. (2021). Attachment and trust in artificial intelligence. Computers in Human Behavior, 115. https://doi.org/10.1016/j.chb.2020.106607

Glikson, E. et Woolley, A. W. (2020). Human trust in artificial intelligence: review of empirical research. Academy of Management Annals, 14(2), 627-660. https://doi.org/10.5465/annals.2018.0057

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F. et Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM Computing Surveys, 51(5), 1-42. https://doi.org/10.1145/3236009

Gulati, R. (1995). Does familiarity breed trust? The implications of repeated ties for contractual choice in alliances. Academy of Management Journal, 38(1), 85-112. https://doi.org/10.5465/256729

Gulati, S., Sousa, S. et Lamas, D. (2019). Towards an empirically developed scale for measuring trust. Proceedings of the 31st European Conference on Cognitive Ergonomics, 45-48. https://doi.org/10.1145/3335082.3335116

Gunning, D. et Aha, D. W. (2019). DARPA’s Explainable Artificial Intelligence (XAI) Program. AI Magazine, 40(2), 44-58. https://doi.org/10.1609/aimag.v40i2.2850

Hair, J. F., Black, W., Babin, B., Andeson, R. et Tatham, R. (2006). Multivariate data analysis (6e éd.). Pearson-Prentice Hall.

Hair, J. F., Page, M. et Brunsveld, N. (2019). Essentials of business research methods (4e éd.). Routeledge-Taylor & Francis.

Hasija, A. et Esper, T. L. (2022). In artificial intelligence (AI) we trust: A qualitative investigation of AI technology acceptance. Journal of Business Logistics, 43(3), 388-412. https://doi.org/10.1111/jbl.12301

Hengstler, M., Enkel, E. et Duelli, S. (2016). Applied artificial intelligence and trust: The case of autonomous vehicles and medical assistance devices. Technological Forecasting and Social Change, 105, 105-120. https://doi.org/10.1016/j.techfore.2015.12.014

Hmoud, B. et Laszlo, V. (2019). Will artificial intelligence take over human resources recruitment and selection. Network Intelligence Studies, 7(13), 21-30. https://dea.lib.unideb.hu/server/api/core/bitstreams/cff8e1b9-7db6-47e9-9642-6fe8e19f565d/content

Hmoud, B. I. et Várallyai, L. (2020). Artificial intelligence in human resources information systems: Investigating its trust and adoption determinants. International Journal of Engineering and Management Sciences, 5(1), 749-765. https://doi.org/10.21791/IJEMS.2020.1.65

Höddinghaus, M., Sondern, D. et Hertel, G. (2021). The automation of leadership functions: Would people trust decision algorithms?. Computers in Human Behavior, 116. https://doi.org/10.1016/j.chb.2020.106635

Hoff, K. A. et Bashir, M. (2015). Trust in automation: Integrating empirical evidence on factors that influence trust. Human Factors, 57(3), 407-434. https://doi.org/10.1177/0018720814547570

Hughes, C., Robert, L., Frady, K. et Arroyos, A. (2019). Artificial intelligence, employee engagement, fairness, and job outcomes: Managing technology and middle and low skilled employees. Dans The changing context of managing people (p. 61-68). Emerald Publishing Limited. https://doi.org/10.1108/978-1-78973-077-720191005

Kaiser, H. F. (1960). The Application of Electronic Computers to Factor Analysis. Educational and Psychological Measurement, 20(1). https://doi.org/10.1177/001316446002000116

Kaplan, A. D., Kessler, T. T., Brill, J. C. et Hancock, P. A. (2023). Trust in artificial intelligence: Meta-analytic findings. Human Factors, 65(2), 337-359. https://doi.org/10.1177/00187208211013988

Kim, J. Y. et Heo, W. (2022). Artificial intelligence video interviewing for employment: perspectives from applicants, companies, developer and academicians. Information Technology & People, 35(3), 861-878. https://doi.org/10.1108/ITP-04-2019-0173

Knowles, B. et Hanson, V. L. (2018). The wisdom of older technology (non) users. Communications of the ACM, 61(3), 72-77. https://eprints.lancs.ac.uk/id/eprint/88296/1/CACM_Pure.pdf

Koufaris, M. et Hampton-Sosa, W. (2004). The development of initial trust in an online company by new customers. Information & Management, 41(3), 377-397. https://doi.org/10.1016/ j.im.2003.08.004

Lakens, D. (2022). Sample size justification. Collabra: Psychology, 8(1). https://doi.org/10.1525/collabra.33267

Lane, M., Williams, M. et Broecke, S. (2023). The impact of AI on the workplace: Main findings from the OECD AI surveys of employers and workers (publication no 288). https://doi.org/10.1787/ea0a0fe1-en

Lankton, N. K., McKnight, D. H. et Tripp, J. (2015). Technology, humanness, and trust: Rethinking trust in technology. Journal of the Association for Information Systems, 16(10). https://doi.org/10.17705/1jais.00411

Langer, M. et König, C. J. (2023). Introducing a multi-stakeholder perspective on opacity, transparency and strategies to reduce opacity in algorithm-based human resource management. Human Resource Management Review, 33(1). https://doi.org/10.1016/j.hrmr.2021.100881

Lapatin, S., Gonçalves, M., Nillni, A., Chavez, L., Quinn, R. L., Green, A. et Alegría, M. (2012). Lessons from the use of vignettes in the study of mental health service disparities. Health Services Research, 47(3.2), 1345-1362. https://doi.org/10.1111/j.1475-6773.2011.01360.x

Larasati, R., De Liddo, A. et Motta, E. (2020, mars). The effect of explanation styles on user's trust. Dans Workshop on explainable smart systems for algorithmic transparency in emerging technologies. https://oro.open.ac.uk/70421/1/70421.pdf

Lee, P., Fyffe, S., Son, M., Jia, Z. et Yao, Z. (2023). A paradigm shift from “human writing” to “machine generation” in personality test development: An application of state-of-the-art natural language processing. Journal of Business and Psychology, 38(1), 163-190. https://doi.org/10.1007/s10869-022-09864-6

Leppink, J. (2018). Analysis of covariance (ANCOVA) vs. moderated regression (MODREG): Why the interaction matters. Health Professions Education, 4(3), 225-232. https://doi.org/10.1016/j.hpe.2018.04.001

Liao, Q. V. et Sundar, S. S. (2022). Designing for responsible trust in AI systems: a communication perspective. Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, 1257-1268. https://doi.org/10.1145/3531146.3533182

Lichtenthaler, U. (2020). Five maturity levels of managing AI: from isolated ignorance to integrated intelligence. Journal of Innovation Management, 8(1), 39-50. https://doi.org/10.24840/2183-0606_008.001_0005

Lin, H. C., Ho, C. F. et Yang, H. (2022). Understanding adoption of artificial intelligence-enabled language e-learning system: An empirical study of UTAUT model. International Journal of Mobile Learning and Organisation, 16(1), 74-94. https://doi.org/10.1504/IJMLO.2022.119966

Liu, X., He, X., Wang, M. et Shen, H. (2022). What influences patients' continuance intention to use AI-powered service robots at hospitals? The role of individual characteristics. Technology in Society, 70. https://doi.org/10.1016/j.techsoc.2022.101996

Lu, L., Cai, R. et Gursoy, D. (2019). Developing and validating a service robot integration willingness scale. International Journal of Hospitality Management, 80, 36-51. https://doi.org/10.1016/j.ijhm.2019.01.005

Madsen, M. et Gregor, S. (2000). Measuring human-computer trust. Proceedings of the 11th Australasian conference on information systems, 6-8. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b8eda9593fbcb63b7ced1866853d9622737533a2

Mahmud, H., Islam, A. N., Ahmed, S. I. et Smolander, K. (2022). What influences algorithmic decision-making? A systematic literature review on algorithm aversion. Technological Forecasting and Social Change, 175. https://doi.org/10.1016/j.techfore.2021.121390

Makarius, E. E., Mukherjee, D., Fox, J. D. et Fox, A. K. (2020). Rising with the machines: A sociotechnical framework for bringing artificial intelligence into the organization. Journal of Business Research, 120, 262-273. https://doi.org/10.1016/j.jbusres.2020.07.045

Mayer, R. C., Davis, J. H. et Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709-734. https://doi.org/10.5465/amr.1995.9508080335

Mcknight, D. H., Carter, M., Thatcher, J. B. et Clay, P. F. (2011). Trust in a specific technology: An investigation of its components and measures. ACM Transactions on Management Information Systems (TMIS), 2(2), 1-25. https://doi.org/10.1145/1985347.1985353

McKnight, D. H., Choudhury, V. et Kacmar, C. (2002). The impact of initial consumer trust on intentions to transact with a web site: a trust building model. The journal of strategic information systems, 11(3-4), 297-323. https://doi.org/10.1016/S0963-8687(02)00020-3

McKnight, D. H., Cummings, L. L. et Chervany, N. L. (1998). Initial trust formation in new organizational relationships. Academy of Management Review, 23(3), 473-490. https://doi.org/10.5465/amr.1998.926622

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267, 1-38. https://doi.org/10.1016/j.artint.2018.07.007

Mirbabaie, M., Brünker, F., Möllmann, N. R. et Stieglitz, S. (2022). The rise of artificial intelligence–understanding the AI identity threat at the workplace. Electronic Markets, 32, 73-99. https://doi.org/10.1007/s12525-021-00496-x

Misztal, B. A. (2001). Trust and cooperation: the democratic public sphere. Journal of Sociology, 37(4), 371-386. https://doi.org/10.1177/144078301128756409

Moray, N. et Inagaki, T. (1999). Laboratory studies of trust between humans and machines in automated systems. Transactions of the Institute of Measurement and Control, 21(4-5), 203-211. https://doi.org/10.1177/0142331299021004

Ore, O. et Sposato, M. (2022). Opportunities and risks of artificial intelligence in recruitment and selection. International Journal of Organizational Analysis, 30(6), 1771-1782. https://doi.org/10.1108/IJOA-07-2020-2291

Pasmore, W., Winby, S., Mohrman, S. A. et Vanasse, R. (2019). Reflections: sociotechnical systems design and organization change. Journal of Change Management, 19(2), 67-85. https://doi.org/10.1080/14697017.2018.1553761

Pereira, V., Hadjielias, E., Christofi, M. et Vrontis, D. (2023). A systematic literature review on the impact of artificial intelligence on workplace outcomes: A multi-process perspective. Human Resource Management Review, 33(1). https://doi.org/10.1016/j.hrmr.2021.100857

Pett, M. A., Lackey, N. R. et Sullivan, J. J. (2003). Making sense of factor analysis: The use of factor analysis for instrument development in health care research. Sage.

Pettersen, L. (2019). Why artificial intelligence will not outsmart complex knowledge work. Work, Employment and Society, 33(6), 1058-1067. https://doi.org/10.1177/0950017018817489

Rajpurkar, P., Chen, E., Banerjee, O. et Topol, E. J. (2022). AI in health and medicine. Nature medicine, 28(1), 31-38. https://doi.org/10.1038/s41591-021-01614-0

Ramachandran, K. K., Mary, A. A. S., Hawladar, S., Asokk, D., Bhaskar, B. et Pitroda, J. R. (2022). Machine learning and role of artificial intelligence in optimizing work performance and employee behavior. Materials Today: Proceedings, 51(8), 2327-2331. https://doi.org/10.1016/j.matpr.2021.11.544

Ransbotham, S., Kiron, D., Candelon, F., Khodabandeh, S. et Chu, M. (2022). Achieving individual and organizational value with AI. MIT Sloan Management Review. https://sloanreview.mit.edu/projects/achieving-individual-and-organizational-value-with-ai/

Robinson, M. D. et Clore, G. L. (2001). Simulation, scenarios, and emotional appraisal: Testing the convergence of real and imagined reactions to emotional stimuli. Personality and Social Psychology Bulletin, 27(11), 1520-1532. https://doi.org/10.1177/01461672012711012

Rossi, F. (2018). Building trust in artificial intelligence. Journal of International Affairs, 72(1), 127-134. https://www.jstor.org/stable/26588348

Rotter, J. B. (1967). A new scale for the measurement of interpersonal trust. Journal of Personality, 35(4), 651–665. https://doi.org/10.1111/j.1467-6494.1967.tb01454.x

Rotter, J. B. (1971). Generalized expectancies for interpersonal trust. American Psychologist, 26(5), 443–452. https://doi.org/10.1037/h0031464

Russel, S. et Susskind, D. (2021, octobre). Positive AI Economic Futures. World Economic Forum. https://www3.weforum.org/docs/WEF_Positive_AI_Economic_Futures_2021.pdf

Ryan, M. (2020). In AI we trust: ethics, artificial intelligence, and reliability. Science and Engineering Ethics, 26(5), 2749-2767. https://doi.org/10.1007/s11948-020-00228-y

Schmitt, N. (1996). Uses and abuses of coefficient alpha. Psychological Assessment, 8(4), 350–353. https://doi.org/10.1037/1040-3590.8.4.350

Schneider, B. A., Avivi-Reich, M. et Mozuraitis, M. (2015). A cautionary note on the use of the Analysis of Covariance (ANCOVA) in classification designs with and without within-subject factors. Frontiers in Psychology, 6(474), 1-12. https://doi.org/10.3389/fpsyg.2015.00474

Shi, S., Gong, Y. et Gursoy, D. (2021). Antecedents of trust and adoption intention toward artificially intelligent recommendation systems in travel planning: a heuristic–systematic model. Journal of Travel Research, 60(8), 1714-1734. https://doi.org/10.1177/0047287520966395

Shin, D. (2021). The effects of explainability and causability on perception, trust, and acceptance: implications for explainable AI. International Journal of Human-Computer Studies, 146. https://doi.org/10.1016/j.ijhcs.2020.102551

Shulner-Tal, A., Kuflik, T. et Kliger, D. (2023). Enhancing fairness perception–Towards human-centred AI and personalized explanations understanding the factors influencing laypeople’s fairness perceptions of algorithmic decisions. International Journal of Human–Computer Interaction, 39(7), 1455-1482. https://doi.org/10.1080/10447318.2022.2095705

Siau, K. et Wang, W. (2018). Building trust in artificial intelligence, machine learning, and robotics. Cutter Business Technology Journal, 31(2), 47-53. https://www.researchgate.net/publication/324006061_Building_Trust_in_Artificial_Intelligence_Machine_Learning_and_Robotics

Söllner, M., Hoffmann, A., Hoffmann, H., Wacker, A. et Leimeister, J. M. (2012). Understanding the formation of trust in IT artifacts. Proceedings of the International Conference on Information Systems (ICIS 2012). https://doi.org/10.1007/978-3-319-05044-7__3

Söllner, M., Hoffmann, A. et Leimeister, J. M. (2016). Why different trust relationships matter for information systems users. European Journal of Information Systems, 25(3), 274-287. https://doi.org/10.1057/ejis.2015.17

Stevens, J. P. (2009). Applied multivariate statistics for the social sciences (5e éd.). Routeledge-Taylor & Francis.

Streiner, D. L. (2003). Starting at the beginning: an introduction to coefficient alpha and internal consistency. Journal of Personality Assessment, 80(1), 99-103. https://doi.org/10.1207/S15327752JPA8001_18

Tabachnick, B. G. et Fidell, L. S. (2019). Using multivariate statistics (7e éd.). Pearson Education.

Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education, 48(1), 1273-1296. https://doi.org/10.1007/s11165-016-9602-2

Tarafdar, M., Tu, Q. et Ragu-Nathan, T. S. (2010). Impact of technostress on end-user satisfaction and performance. Journal of Management Information Systems, 27(3), 303-334. https://doi.org/10.2753/MIS0742-1222270311

Tran, A. Q., Nguyen, L. H., Nguyen, H. S. A., Nguyen, C. T., Vu, L. G., Zhang, M., Vu, T. M. T., Nguyen, S. H., Tran, B. X., Latkin, C. A., Ho, R. C. M. et Ho, C. S. (2021). Determinants of intention to use artificial intelligence-based diagnosis support system among prospective physicians. Frontiers in Public Health, 9. https://doi.org/10.3389/fpubh.2021.755644

Toreini, E., Aitken, M., Coopamootoo, K., Elliott, K., Zelaya, C. G. et Van Moorsel, A. (2020). The relationship between trust in AI and trustworthy machine learning technologies. Proceedings of the 2020 conference on fairness, accountability, and transparency (272-283). https://doi.org/10.1145/3351095.3372834

Trist, E. L. et Bamforth, K. W. (1951). Some social and psychological consequences of the longwall method of coal-getting: an examination of the psychological situation and defences of a work group in relation to the social structure and technological content of the work system. Human Relations, 4(1), 3-38. https://doi.org/10.1177/001872675100400101

Tsiakas, K. et Murray-Rust, D. (2022). Using human-in-the-loop and explainable AI to envisage new future work practices. Proceedings of the 15th International Conference on Pervasive Technologies Related to Assistive Environments. https://doi.org/10.1145/3529190.3534779

Venkatesh, V. (2022). Adoption and use of AI tools: a research agenda grounded in UTAUT. Annals of Operations Research, 308, 1-12. https://doi.org/10.1007/s10479-020-03918-9

Venkatesh, V., Morris, M. G. et Ackerman, P. L. (2000). A longitudinal field investigation of gender differences in individual technology adoption decision-making processes. Organizational Behavior and Human Decision Processes, 83(1), 33-60. https://doi.org/10.1006/obhd.2000.2896

Venkatesh, V., Morris, M. G., Davis, G. B. et Davis, F. D. (2003). User acceptance of information technology: toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540

Vereschak, O., Bailly, G. et Caramiaux, B. (2021). How to evaluate trust in AI-assisted decision making? A survey of empirical methodologies. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), 1-39. https://doi.org/10.1145/3476068

von Eschenbach, W. J. (2021). Transparency and the black box problem: why we do not trust AI. Philosophy & Technology, 34(4), 1607-1622. https://doi.org/10.1007/s13347-021-00477-0

Wadden, J. J. (2022). Defining the undefinable: the black box problem in healthcare artificial intelligence. Journal of Medical Ethics, 48(10), 764-768. https://doi.org/10.1136/medethics-2021-107529

Wang, X. et Yin, M. (2021). Are explanations helpful? a comparative study of the effects of explanations in ai-assisted decision-making. Proceeding of the 26th International Conference on Intelligent User Interfaces. https://doi.org/10.1145/3397481.3450650

Waung, M., McAuslan, P. et Lakshmanan, S. (2021). Trust and intention to use autonomous vehicles: manufacturer focus and passenger control. Transportation Research Part F: Traffic Psychology and Behaviour, 80, 328-340. https://doi.org/10.1016/j.trf.2021.05.004

Westphal, M., Vössing, M., Satzger, G., Yom-Tov, G. B. et Rafaeli, A. (2023). Decision control and explanations in human-AI collaboration: improving user perceptions and compliance. Computers in Human Behavior, 144. https://doi.org/10.1016/j.chb.2023.107714

Wright, S. A. et Schultz, A. E. (2018). The rising tide of artificial intelligence and business automation: developing an ethical framework. Business Horizons, 61(6), 823-832. https://doi.org/10.1016/j.bushor.2018.07.001

Xiang, Y., Zhao, L., Liu, Z., Wu, X., Chen, J., Long, E., Lin, D., Chen, C., Lin, Z. et Lin, H. (2020). Implementation of artificial intelligence in medicine: status analysis and development suggestions. Artificial Intelligence in Medicine, 102. https://doi.org/10.1016/j.artmed.2019.101780

Yang, R. et Wibowo, S. (2022). User trust in artificial intelligence: A comprehensive conceptual framework. Electronic Markets, 32(4), 2053-2077. https://doi.org/10.1007/s12525-022-00592-6

Yu, X., Xu, S. et Ashton, M. (2023). Antecedents and outcomes of artificial intelligence adoption and application in the workplace: the socio-technical system theory perspective. Information Technology & People, 36(1), 454-474. https://doi.org/10.1108/ITP-04-2021-0254

Zhang, B., Zhu, Y., Deng, J., Zheng, W., Liu, Y., Wang, C. et Zeng, R. (2023). “I am here to assist your tourism”: predicting continuance intention to use AI-based chatbots for tourism. Does gender really matter?. International Journal of Human–Computer Interaction, 39(9), 1887-1903. https://doi.org/10.1080/10447318.2022.2124345

Zielonka, J. T. (2022). The impact of trust in technology on the appraisal of technostress creators in a work-related context. Proceedings of the 55th Hawaii International Conference on System Sciences. http://hdl.handle.net/10125/80055

Published

2024-12-13